
Version 1.1.0

Introduction
Do you want to truly know your game can reach the internet? Eazy NetChecker is the right tool! Eazy
NetChecker is a light but reliable and powerful tool for really determining the status of the internet
connection on all devices and platforms.

Methods like Unity's Application.internetReachability cannot truly tell if a device is actually connected
to the internet, and neither was designed to do so. Moreover, simple methods like pinging google are
unreliable since devices could appear to be connected to the internet, but in reality be behind a restricted
network. Eazy NetChecker is the solution to all that! By utilizing a technique called Captive Portal
Detection, it can quickly and reliably determine the current internet connection.

Captive Portal Detection is a technique that is used in all major operating systems for detecting
internet connectivity.

Features

Reliable detection of internet connection status (Pending, NoConnection, WalledGarden, Connected)

Pre-specified captive portal detection check methods (Google204, MicrosoftNCSI, AppleHotspot)

Custom check methods

Automatically select the best check method for each build platform

Control over when checks are performed

On Start: Run a check when your game is loaded
Continuously: Automatically run checks on configurable intervals
Manual: Run a single check whenever you need it.

Stats and info about internet status and connectivity

Helpful events to listen to (OnStart, OnFinish, OnStatusChanged, OnTimeout)

Runtime API (Fully documented)

Easy to use Editor

Super easy integration

Full C# source code

af://n3
https://docs.unity3d.com/ScriptReference/Application-internetReachability.html
af://n8
af://n39

Compatibility

Multi-platform support (Windows, Mac, Linux, Android, iOS)
Unity 5.6 or higher

Download

You can download the plugin from the Unity Asset store

Installation
Installation is super easy. You can get Eazy NetChecker working in just a few minutes. First, download the
Unity package from the Unity Asset Store. When the download is finished, the Import window should
appear, listing all the files and folders in the package. Make sure you have them all selected, and press
Import. Unity should now start importing the assets in the package.

Content

The imported package includes all the scripts for Eazy NetChecker, as well as demo scenes for
demonstrations. Some editor resources are also included. The main folder will be stored at
Assets/Hellmade/Eazy NetChecker

Demo files: This folder included example scenes and all demo files Assets/Hellmade/Eazy
NetChecker/Demo

Scripts: All the scripts required for Eazy NetChecker Assets/Hellmade/Eazy NetChecker/Scripts
Resources: Various resources we use for Eazy NetChecker, mostly for the editor. Please do not remove
this folder Assets/Hellmade/Eazy NetChecker/Resources
Common: Various global resources we use across all of our assets, usually for the editors. Please do
not remove this folder Assets/Hellmade/Common

Getting Started
Setting Eazy NetChecker up and using it is super easy and straightforward. It is also extremely flexible since
it allows you to use either the editor to set it up, or do everything with code on runtime. Of course, using
both is also possible. Everything will be explained for both ways.

Setup

Editor

The only initial setup needed for the editor, is to create the Eazy NetChecker GameObject. This can easily be
done by either navigating to GameObject > Hellmade Games and selecting Eazy NetChecker. This will create a
GameObject in your scene with the Eazy NetChecker component on it. You can always create an empty
GameObject and add the Eazy NetChecker component yourself too.

Do not create or have more than one Eazy NetChecker in the same scene. Eazy NetChecker retains
its life over different scenes, so you only need to create it once, in your first scene.

af://n39
af://n45
af://n47
af://n49
af://n60
af://n62
af://n63

Eazy NetChecker editor

Runtime

If you want to handle everything with code, there is no reason to add an Eazy NetChecker GameObject. It
will automatically be created and initialized for you as soon as you reference it for the first time in your
code.

Make sure to always include the namespace Hellmade.Net when using Eazy NetChecker from code. Just use
this on the top of every script that uses Eazy NetChecker:

using Hellmade.Net;

af://n68
af://n72

Check Internet connection

Checking for internet connection can be done in a few ways. You can manually perform a check once, start a
continuous check which will be performed on a specified interval, or perform a check on start up.

Before you perform any kind of check, you need to select which check method you want to use. For the
standard check methods, just use the appropriate check method selection function:

You can also select a check method in the editor before runtime

If no check method is specifically selected, one of the standard check method will be choosen automatically,
based on the platform running:

Windows (MicrosoftNCSI)
Linux/Android (Google204)
MacOS/iOS (AppleHotspot)

Manual Check

The simplest case would be to perform a single manual check:

This will start a process for checking the current internet connection status in the background. The check
method will raise various events during its lifetime. In this example, we added a listener to the
OnCheckFinished event, which will be raised as soon as a check is finished. Here the check is performed on
awake, but of course you can perform an internet check whenever and wherever you need to.

Continuous Check

You can also start a continuous check, which will run on a specified interval, until you decide to stop it:

EazyNetChecker.UseGoogle204Method();

private void Awake()

{

 EazyNetChecker.UseGoogle204Method();

 EazyNetChecker.OnCheckFinished += OnNetCheckFinished;

 EazyNetChecker.CheckConnection();

}

private void OnNetCheckFinished()

{

 Debug.Log(EazyNetChecker.Status);

}

af://n72
https://hellmadegames.gitbook.io/eazy-netchecker/check-methods
af://n86
https://hellmadegames.gitbook.io/eazy-netchecker/events
af://n90

The above example will perform a check every 20 seconds (default). It also listens to the
OnConnectionStatusChanged event, which is raised everytime the status of the internet connection is
changed (after a check is performed).

You can use whatever events you like, depending on your specific game logic. You can even not use an
event, and implement your logic by checking the current detected internet connection status like the
example below:

Settings

The check interval (time between continuous checks), and the timeout time can also be changed. Eazy
NetChecker can be configured using both the editor and the runtime API.

Editor

Configuring the settings through the editor is very straightforward. All of them can be found in the Settings
section

private void Awake()

{

 EazyNetChecker.UseGoogle204Method();

 EazyNetChecker.OnConnectionStatusChanged += OnNetStatusChanged;

 EazyNetChecker.StartConnectionCheck();

}

private void OnNetStatusChanged()

{

 Debug.Log("Internet Connection Status changed to: " + EazyNetChecker.Status);

}

private void Awake()

{

 EazyNetChecker.UseGoogle204Method();

 EazyNetChecker.StartConnectionCheck();

}

private void Update()

{

 if(EazyNetChecker.Status == NetStatus.Connected)

 {

 Debug.Log("Yeyyyy, I have internet!");

 }

 else

 {

 Debug.Log("No internet :(");

 }

}

af://n96
af://n98

Settings section

Runtime

All settings can be set before you perform a check:

Check Methods
Check methods are responsible for determining the current internet connection. They are all using the
Captive Portal Detection technique, which is used by all major operating systems. However, there are
different check methods available. While they all work in the same way, the data they use to determine
whether internet connection can be established can differ. Eazy NetChecker comes with a few ready to use
check methods, but is also extendable by allowing you to set custom check methods to fit your
requirements.

Standard Check Methods

As already stated, Eazy NetChecker uses check methods that major operating systems are using. In
particular, the following methods come ready to be used in Eazy NetChecker

Google 204

Google 204 is one of the captive portal detection methods that Google uses in its own operating systems
and devices. You can use Google204 by selecting it in the editor, or by calling the following function

Google204 is just an empty page hosted by google. The method just expects an HTTP 204 status code from
it.

Microsoft Connect Test

private void Awake()

{

 EazyNetChecker.CheckInterval = 30f;

 EazyNetChecker.Timeout = 15f;

 EazyNetChecker.ShowDebug = true;

 EazyNetChecker.UseGoogle204Method();

 EazyNetChecker.StartConnectionCheck();

}

EazyNetChecker.UseGoogle204Method();

af://n102
af://n105
af://n107
af://n109
af://n113

Microsoft Connect Test is a text file hosted by Microsoft, and is the method used by Microsoft for internet
status detection. Select it from the editor, or use the following function:

Unlike Google204, Microsoft Connect Test expects certain content to be returned from the HTTP request,
instead of a status code. Specifically it expects to get the following text

Apple Hotspot

Apple hotspot is very similar to Microsoft NCSI, but it is used by Apple. Use it by selecting it in the editor or
by using the following function:

Apple Hotspot expects to get a specific HTML code as content:

Custom Check Methods

Eazy NetChecker is fully flexible and extentable since it allows you to create your own custom check
methods to specifically fit your needs. You may ask why would you want a custom one since the standard
check methods are from major companies and are supposed to be reliable. Well, take for example the case
where you want to download something from your own server in your game. Internet connection may be
present and working fine, therefore a Google204 will detect a connected network. However, your server
may actually be down and therefore your game cannot really connect to it. While general internet
connection may be working fine, the connection you actually want to establish is unavailable. Custom check
methods are used for cases like that.

Creating Check Method Pages

First, you need to create the check method page exactly as you like it, and upload it to your server. This will
act as the check link. You will also need to decide whether you want to check against HTTP status code, or
the content of the link.

For example, let's create a custom check method for Hellmade Games (You can name your check method to
match your needs). First, create an empty html page and name it connectioncheck.html. In this example, we
will use page content as the expected response. Just put a simple text in your page that will act as the
expected content:

That's it for the html page. Now just upload it on your server. You can find ours at http://www.hellmadegam
es.com/connectioncheck.html

EazyNetChecker.UseMicrosoftConnectTestMethod();

Microsoft Connect Test

EazyNetChecker.UseAppleHotspotMethod();

Connection Check

af://n118
af://n122
af://n124
http://www.hellmadegames.com/connectioncheck.html

If you are targeting Android 9+ and/or iPhone, make sure to use an HTTPS link. Cleartext HTTP traffic is
not permitted on such devices, and therefore the check method will not work correctly. If you absolutely
need to use an HTTP link, please check the documentation of the aforementioned devices on how to allow
cleartext HTTP.

Check Method Setup

Now, you just need to set it up in Eazy NetChecker. You can do it both in the editor, or during runtime from
code.

Editor

All you need to do is create a new custom check method by writing its ID (name) and click the + button. The
new check method will be added to the list. In the link field, just add the link to your uploaded html page.
Then select the expected response type from the tabs below (Response content in our example), and just
write down what the expected content is (if content is selected), or select the expected HTTP status code (if
HTTP status code is selected).

Create a new check method by writing its ID and pressing the + button

You are all done. If you want to use your new method, just select it.

Runtime

Creating a custom method during runtime is still super easy:

If your check method is using an HTTP status code instead, you can create it in a very similar way (let's say
you want an HTTP 204):

string link = "http://www.hellmadegames.com/connectioncheck.html";

string expectedContent = "Connection Check";

NetCheckMethod hellmadeMethod = new NetCheckMethod("HellmadeCheckMethod", link,

expectedContent, false);

af://n130
af://n132
af://n138

You can now either add it to your custom methods and use it:

Or just use it without adding it:

Adding it to your custom methods will make it available to use later on if for some reason you select
another check method in between.

Check methods created during runtime are not retained after execution is finished. If you want to
setup check methods that are saved, create them in the editor.

Events
Various events are raised during the lifetime of an internet check. Events are very useful become they allow
you to implement various different logics based on your requirements, when it comes to network status
detection. You can listen to them from as many scripts as you want.

Make sure to not listen to events twice from the same script, or keep listening to them when not
wanted.

OnCheckStarted

This event is raised as soon as an internet check is started. It will be raised for every internet check, if you
have started a continuous check.

You can listen/stop listening to this event this way:

string link = "http://www.hellmadegames.com/connectioncheck.html";

HttpStatusCode expectedHttpStatusCode = HttpStatusCode.NoContent;

NetCheckMethod hellmadeMethod = new NetCheckMethod("HellmadeCheckMethod", link,

expectedHttpStatusCode);

EazyNetChecker.AddCustomMethod(hellmadeMethod, true);

EazyNetChecker.UseMethod(hellmadeMethod);

...

// Start listening

EazyNetChecker.OnCheckStarted += OnNetCheckStarted;

...

// Stop listening when you don't need it

EazyNetChecker.OnCheckStarted -= OnNetCheckStarted;

...

private void OnNetCheckStarted()

{

 Debug.Log("Internet check just started");

af://n149
af://n152

OnCheckFinished

This event is raised as soon as an internet check is finished. It will be raised for every internet check, if you
have started a continuous check.

You can listen/stop listening to this event this way:

OnConnectionStatusChanged

This event is raised as soon as an internet check is finished and a different connection status is detected.
You can use this event to act accordingly if the connection status changes and you want to handle
connection-specific logic.

You can listen/stop listening to this event this way:

}

...

// Start listening

EazyNetChecker.OnCheckFinished += OnNetCheckFinished;

...

// Stop listening when you don't need it

EazyNetChecker.OnCheckFinished -= OnNetCheckFinished;

...

private void OnNetCheckFinished()

{

 Debug.Log("Internet check just finished with status " + EazyNetChecker.Status);

}

...

// Start listening

EazyNetChecker.OnConnectionStatusChanged += OnNetConnectionStatusChanged;

...

// Stop listening when you don't need it

EazyNetChecker.OnConnectionStatusChanged -= OnNetConnectionStatusChanged;

...

private void OnNetConnectionStatusChanged()

{

 Debug.Log("Internet status changed to " + EazyNetChecker.Status);

}

af://n156
af://n160
af://n164

OnCheckTimeout

This event is raised when an internet check times out. An internet check will time out if it is not able to
detect the internet connection status within the specified timeout period.

You can listen/stop listening to this event this way:

API Reference
You can access the API reference online at: http://www.hellmadegames.com/projects/eazynetchecker/docs/
api-reference/html/N_Hellmade_Net.htm

You can also find an offline version included in the package

Please use the online version whenever you can, since it will always be up to date faster.

Support
If you need help, have a question or want to recommend future features, please feel free to contact us and
we will get back to you as soon as possible.

You can either send us an email, or even contact us using Facebook:

Email: support@hellmadegames.com

Facebook: https://www.facebook.com/hellmadegames

Change Log

[1.1.0] - 13-03-2019

Added

...

// Start listening

EazyNetChecker.OnCheckTimeout += OnNetCheckTimeout;

...

// Stop listening when you don't need it

EazyNetChecker.OnCheckTimeout -= OnNetCheckTimeout;

...

private void OnNetCheckTimeout()

{

 Debug.Log("Check timed out! Unable to determine internet connection");

}

af://n164
af://n168
http://www.hellmadegames.com/projects/eazynetchecker/docs/api-reference/html/N_Hellmade_Net.htm
af://n172
mailto:support@hellmadegames.com
https://www.facebook.com/hellmadegames
af://n177
af://n178

Warning messages on editor (Invalid link & unsafe cleartext HTTP link)
Connection statistics (Editor & API)

Changed

Standard check methods (Secure version of google204, Miscrosoft NCSI to Microsoft Connect Test,
Secure version of apple hotspot)
NetCheckMethod implementation from WWW to UnityWebRequest

Fixed

Non-stop debug message after time out.

	Introduction
	Features
	Compatibility
	Download

	Installation
	Content

	Getting Started
	Setup
	Editor
	Runtime

	Check Internet connection
	Manual Check
	Continuous Check

	Settings
	Editor
	Runtime

	Check Methods
	Standard Check Methods
	Google 204
	Microsoft Connect Test
	Apple Hotspot

	Custom Check Methods
	Creating Check Method Pages

	Check Method Setup
	Editor
	Runtime

	Events
	OnCheckStarted
	OnCheckFinished
	OnConnectionStatusChanged
	OnCheckTimeout

	API Reference
	Support
	Change Log
	[1.1.0] - 13-03-2019

